Confusion Class Discrimination Techniques for Text Classification
نویسندگان
چکیده
منابع مشابه
Classification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کاملInter-class relationships in text classification
Text classification is an active research area motivated by many real-world applications. Even so, research formulations and prototypes often make assumptions that are not suitable for deployment. For example, in many real applications, the set of class labels keeps evolving, continual user feedback must be integrated into the classifier, and test documents may come from a population statistica...
متن کاملText Classification Using Machine Learning Techniques
Automated text classification has been considered as a vital method to manage and process a vast amount of documents in digital forms that are widespread and continuously increasing. In general, text classification plays an important role in information extraction and summarization, text retrieval, and questionanswering. This paper illustrates the text classification process using machine learn...
متن کاملText Classification Using Novel "Anti-Bayesian" Techniques
This paper presents a non-traditional “Anti-Bayesian” solution for the traditional Text Classification (TC) problem. Historically, all the recorded TC schemes work using the fundamental paradigm that once the statistical features are inferred from the syntactic/semantic indicators, the classifiers themselves are the well-established statistical ones. In this paper, we shall demonstrate that by ...
متن کاملUsing Class Frequency for Improving Centroid-based Text Classification
Most previous works on text classification, represented importance of terms by term occurrence frequency (tf) and inverse document frequency (idf). This paper presents the ways to apply class frequency in centroid-based text categorization. Three approaches are taken into account. The first one is to explore the effectiveness of inverse class frequency on the popular term weighting, i.e., TFIDF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Software
سال: 2008
ISSN: 1000-9825
DOI: 10.3724/sp.j.1001.2008.00630